2,373 research outputs found

    Body size of insular carnivores: little support for the island rule.

    No full text
    Published versio

    Neuronal assembly dynamics in supervised and unsupervised learning scenarios

    Get PDF
    The dynamic formation of groups of neurons—neuronal assemblies—is believed to mediate cognitive phenomena at many levels, but their detailed operation and mechanisms of interaction are still to be uncovered. One hypothesis suggests that synchronized oscillations underpin their formation and functioning, with a focus on the temporal structure of neuronal signals. In this context, we investigate neuronal assembly dynamics in two complementary scenarios: the first, a supervised spike pattern classification task, in which noisy variations of a collection of spikes have to be correctly labeled; the second, an unsupervised, minimally cognitive evolutionary robotics tasks, in which an evolved agent has to cope with multiple, possibly conflicting, objectives. In both cases, the more traditional dynamical analysis of the system’s variables is paired with information-theoretic techniques in order to get a broader picture of the ongoing interactions with and within the network. The neural network model is inspired by the Kuramoto model of coupled phase oscillators and allows one to fine-tune the network synchronization dynamics and assembly configuration. The experiments explore the computational power, redundancy, and generalization capability of neuronal circuits, demonstrating that performance depends nonlinearly on the number of assemblies and neurons in the network and showing that the framework can be exploited to generate minimally cognitive behaviors, with dynamic assembly formation accounting for varying degrees of stimuli modulation of the sensorimotor interactions

    Computational phenotyping of two-person interactions reveals differential neural response to depth-of-thought.

    Get PDF
    Reciprocating exchange with other humans requires individuals to infer the intentions of their partners. Despite the importance of this ability in healthy cognition and its impact in disease, the dimensions employed and computations involved in such inferences are not clear. We used a computational theory-of-mind model to classify styles of interaction in 195 pairs of subjects playing a multi-round economic exchange game. This classification produces an estimate of a subject's depth-of-thought in the game (low, medium, high), a parameter that governs the richness of the models they build of their partner. Subjects in each category showed distinct neural correlates of learning signals associated with different depths-of-thought. The model also detected differences in depth-of-thought between two groups of healthy subjects: one playing patients with psychiatric disease and the other playing healthy controls. The neural response categories identified by this computational characterization of theory-of-mind may yield objective biomarkers useful in the identification and characterization of pathologies that perturb the capacity to model and interact with other humans

    Multistable attractors in a network of phase oscillators with three-body interaction

    Full text link
    Three-body interactions have been found in physics, biology, and sociology. To investigate their effect on dynamical systems, as a first step, we study numerically and theoretically a system of phase oscillators with three-body interaction. As a result, an infinite number of multistable synchronized states appear above a critical coupling strength, while a stable incoherent state always exists for any coupling strength. Owing to the infinite multistability, the degree of synchrony in asymptotic state can vary continuously within some range depending on the initial phase pattern.Comment: 5 pages, 3 figure

    A Moving Bump in a Continuous Manifold: A Comprehensive Study of the Tracking Dynamics of Continuous Attractor Neural Networks

    Full text link
    Understanding how the dynamics of a neural network is shaped by the network structure, and consequently how the network structure facilitates the functions implemented by the neural system, is at the core of using mathematical models to elucidate brain functions. This study investigates the tracking dynamics of continuous attractor neural networks (CANNs). Due to the translational invariance of neuronal recurrent interactions, CANNs can hold a continuous family of stationary states. They form a continuous manifold in which the neural system is neutrally stable. We systematically explore how this property facilitates the tracking performance of a CANN, which is believed to have clear correspondence with brain functions. By using the wave functions of the quantum harmonic oscillator as the basis, we demonstrate how the dynamics of a CANN is decomposed into different motion modes, corresponding to distortions in the amplitude, position, width or skewness of the network state. We then develop a perturbative approach that utilizes the dominating movement of the network's stationary states in the state space. This method allows us to approximate the network dynamics up to an arbitrary accuracy depending on the order of perturbation used. We quantify the distortions of a Gaussian bump during tracking, and study their effects on the tracking performance. Results are obtained on the maximum speed for a moving stimulus to be trackable and the reaction time for the network to catch up with an abrupt change in the stimulus.Comment: 43 pages, 10 figure

    A computational account of threat-related attentional bias

    Get PDF
    Visual selective attention acts as a filter on perceptual information, facilitating learning and inference about important events in an agent’s environment. A role for visual attention in reward-based decisions has previously been demonstrated, but it remains unclear how visual attention is recruited during aversive learning, particularly when learning about multiple stimuli concurrently. This question is of particular importance in psychopathology, where enhanced attention to threat is a putative feature of pathological anxiety. Using an aversive reversal learning task that required subjects to learn, and exploit, predictions about multiple stimuli, we show that the allocation of visual attention is influenced significantly by aversive value but not by uncertainty. Moreover, this relationship is bidirectional in that attention biases value updates for attended stimuli, resulting in heightened value estimates. Our findings have implications for understanding biased attention in psychopathology and support a role for learning in the expression of threat-related attentional biases in anxiety

    Foraging for foundations in decision neuroscience: insights from ethology

    Get PDF
    Modern decision neuroscience offers a powerful and broad account of human behaviour using computational techniques that link psychological and neuroscientific approaches to the ways that individuals can generate near-optimal choices in complex controlled environments. However, until recently, relatively little attention has been paid to the extent to which the structure of experimental environments relates to natural scenarios, and the survival problems that individuals have evolved to solve. This situation not only risks leaving decision-theoretic accounts ungrounded but also makes various aspects of the solutions, such as hard-wired or Pavlovian policies, difficult to interpret in the natural world. Here, we suggest importing concepts, paradigms and approaches from the fields of ethology and behavioural ecology, which concentrate on the contextual and functional correlates of decisions made about foraging and escape and address these lacunae

    Combined model-free and model-sensitive reinforcement learning in non-human primates

    Get PDF
    Contemporary reinforcement learning (RL) theory suggests that potential choices can be evaluated by strategies that may or may not be sensitive to the computational structure of tasks. A paradigmatic model-free (MF) strategy simply repeats actions that have been rewarded in the past; by contrast, modelsensitive (MS) strategies exploit richer information associated with knowledge of task dynamics. MF and MS strategies should typically be combined, because they have complementary statistical and computational strengths; however, this tradeoff between MF/MS RL has mostly only been demonstrated in humans, often with only modest numbers of trials. We trained rhesus monkeys to perform a two-stage decision task designed to elicit and discriminate the use of MF and MS methods. A descriptive analysis of choice behaviour revealed directly that the structure of the task (of MS importance) and the reward history (of MF and MS importance) significantly influenced both choice and response vigour. A detailed, trial-by-trial computational analysis confirmed that choices were made according to a combination of strategies, with a dominant influence of a particular form of model sensitivity that persisted over weeks of testing. The residuals from this model necessitated development of a new combined RL model which incorporates a particular credit assignment weighting procedure. Finally, response vigor exhibited a subtly different collection ofMFand MS influences. These results provide new illumination onto RL behavioural processes in non-human primates
    corecore